
Applications of Neural
Networks to strings and

sequences

Lecture 8.2
by Marina Barsky

Convolutional Neural
Networks

CNNs

Problem with number of layers
and number of neurons

• The number of parameters in NN grows very fast as we add
more layers

• If a single input vector contains n features, and we create
another layer of size m - we add n*m additional weights edges
For n=1000 and m=1000 we need to learn 1,000,000 additional weights

• Optimizing such big models is computationally expensive

• When our training examples are images, the input is already
very high-dimensional

• If we use MLP with more than 3 layers - the optimization
problem quickly becomes intractable

Recognizing local regions
of the image

• Pixels that are close to each other usually
represent the same type of information:
sky, water, leaves, fur, bricks... This
information can likely be combined into a
smaller number of features

• The parts of an image where two different
types of information “touch” one another -
represent a shape

• The idea is to train the neural network to
recognize regions of the same information
as well as the edges, and use these learned
features as new less-dimensional vectors
for classifying images

Detecting image patterns

• We can split the image into square patches using a sliding
frame approach

• We can then train multiple smaller models at once, each
small model receiving a square patch as input

• The goal of each small model is to learn to detect a
specific kind of pattern in the input patch

• For example, one small model will learn to detect the sky,
another one will detect the grass, the third one will detect
edges of a building...

The “filter” idea

• If we train a network using a set of labeled images (say,
set of cats) the model will learn a set of local patterns
which are most common to all cats

• We call these local patterns filters

• The CNN learns the filter shapes on its own during training
- all you need to decide is the size of each filter, and the
network will learn what each filter should look like

• Later, during classification, it will apply each filter to a new
image and compute the output - image class

Comparing input patch to a filter

• Once you decide on the size of each filter,
the regular training will produce the
optimal values for each filter matrix

• Let’s assume - for simplicity - that the
input image is black and white, with 1
representing black and 0 representing
white pixels

• Assume that our patches are 3 by 3 pixels
(p = 3). Some patch could then look like
matrix P (for “patch”)

• Let’s say we want to detect a pattern
called “cross” in the image data. We
initialize the matrix F (filter) with some
random values

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter initialized

Learning matrix F

• The small regression model that will
detect “cross” patterns (and only them)
would need to learn a 3 by 3 parameter
matrix F where parameters at positions
corresponding to the 1s in the input
patch would be positive numbers,
while the parameters in positions
corresponding to 0s would be close to
zero

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 0

F= 2 4 1

0 3 0

Filter: to be learned from data

Learning matrix F

• The learning proceeds by calculating the
dot-product between matrices P and F
and then summing up all values from the
resulting vector

• The higher the value, the more similar F
is to P:

P · F = [0 · 0 + 2 · 1 + 0 · 0, 2 · 1 + 4 · 1 + 3 · 1,
3 · 0 + 1 · 1 + 0 · 1] = [2, 9, 1]

The sum is 2 + 9 + 1 = 12

• This operation — the dot product
between a patch and a filter and then
summing the values — is called
convolution

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter: randomly initialized

Optimizing (matching) filter to a
patch

• If our input patch P had a different
pattern - then the convolution would
give a lower result: 0 + 9 + 0 = 9

• The more the patch “looks” like the
filter, the higher the value of the
convolution is

• There’s also a bias parameter b
associated with each filter F which is
added to the result of a convolution
before applying the nonlinearity

1 1 1

P= 0 1 0

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter: randomly initialized

Convolutional Neural Network
(CNN)
• A Convolutional Neural Network (CNN) is a special kind of

Feed Forward NN that significantly reduces the number of
parameters in a deep neural network, by converting
multi-dimensional data into smaller convolved features

• CNNs are used in image and text recognition where they
beat many previously established benchmarks

Computing convolution for the
entire image

• One hidden layer of a CNN consists of multiple
convolution filters (each with its own bias parameter), just
like one layer in a vanilla NN consists of multiple units

• Each filter of the first (leftmost) hidden layer slides — or
convolves — across the input image, left to right, top to
bottom, and convolution is computed for each sliding
input frame

• So each neuron in a CNN layer is a filter which learns a
single pattern. The number of such units generally is much
smaller than the number of original pixels

Filter convolving across the image
1 0 0 1

1 0 1 0

1 1 0 0

0 1 0 1

1 0 0 1

1 0 1 0

1 1 0 0

0 1 0 1

1 0 0 1

1 0 1 0

1 1 0 0

0 1 0 1

1 0 0 1

1 0 1 0

1 1 0 0

0 1 0 1

-1 2

4 -2

1

-1 2

4 -2

1

-1 2

4 -2

1

-1 2

4 -2

1

4

4 -1

4 -1 7

4 -1 7

2

● As a result of this convolution,
instead of a 4x4 image matrix
we get a 3x3 matrix

● This matrix becomes an input
to the next hidden layer

● A nonlinearity (ReLU) is
applied to the [sum of the
convolution plus the bias]

● The numbers for each filter
matrix F and the value of the
bias term b, are found by the
gradient descent with
backpropagation

Volume: collection of matrices

• Each layer with m filters produces m matrices of size pxp
which serve as an input for the next hidden layer

• If the next layer is also a convolution layer, then layer i + 1
treats the output of the preceding layer i as a collection of
m images

• Such a collection is called a volume. Each filter of layer i + 1
convolves the whole volume produced by filter i

• The convolution of a patch of a volume is simply the sum
of convolutions of the corresponding patches of individual
matrices in this volume

The volume convolves as a single
input

3 1 -2 4

4 1 0 5

12 2 1 0

1 -2 -1 2

2 -1 0 1

-3 1 1 0

1 1 0 0

0 1 0 1

1 -1 0 1

2 -1 1 0

1 1 0 0

0 1 0 1

-2 3

5 -1

-2

-3

Volume

(-2 · 3 + 3 · 1 + 5 · 4 + -1 · 1) +(-2 · 2 + 3 · (-1) + 5 · (-3) + -1 · 1) + (-2 · 1 + 3 · (-1) + 5 · 2 + -1 · (-1)) + (-2)= -3

Input image as a volume of 3
color channels

CNNs also often get volumes as input, since an image is
usually represented by three channels: R, G, and B, each
channel being a monochrome picture

CNN: parameters

This is just a very high-level picture of the CNN architecture

Other essential features include strides, padding, and pooling

• Strides and padding are hyperparameters of the
convolution filter and the sliding window

• Pooling example: max pooling

All this is designed to reduce the number of parameters of a
CNN even more

Sequence classification
with CNN

CNN for sequence classification

• We can use the same idea with sequence data:

The sequence can be thought of as a 1D image, where
time is treated as a spatial dimension (like the height or
width of a 2D image)

• CNNs are often used for:

• audio generation

• machine translation

• text classification

• timeseries forecasting

1D convolution

• In 2D convolutions we
extracted 2D patches from
image tensors

• In the same way, we can use
1D convolutions, extracting
local 1D patches
(subsequences) from
sequences

• Such 1D convolution layers can recognize local patterns in a

sequence

• Because the same input transformation is performed on every patch,

a pattern learned at a certain position in a sentence can later be

recognized at a different position

For instance, a 1D CNN which is using convolution windows of size 5 is

able to learn words or word fragments of length 5 or less, and is able to

recognize these words in any context in an input sequence

Demos of using CNN for image and sequence
classification: here

https://github.com/mgbarsky/demo_cnn.git

What is going on inside?
What does the network learn about images?

How and what does it learn?

The exact way neural networks see and interpret the world
remains a black box

We want to better understand of how exactly they
recognize specific patterns or objects in order to:

• improve the quality of NN learning
• solve legal problems since in many cases the outputs

have to be interpretable by humans

How CNN sees images after
learning

• Neural networks learn to transform images into
successive layers of increasingly meaningful and complex
representations (filters)

• We can think of a deep network as a “multistage
information-distillation operation, where information
goes through successive filters and comes out increasingly
purified”. (François Chollet, “Deep Learning with Python”)

• We can generate patterns that maximize the mean
activation of a chosen feature map in a certain layer

Experiment: understanding
learned patterns (filters)

• Get a network which already learned to recognize
thousands of image types
• Pre-trained model is available from torchvision.models
• Data is from http://www.image-net.org/
• The network is VGG-16

• The goal is NOT to train the model, but use it in an
evaluation mode

• Then show an image with random pixels to the model and
optimize the pixel values to best match each filter at each
hidden level (Erhan, D. et al. “Visualizing Higher-Layer
Features of a Deep Network”, 2009).

http://www.image-net.org/

VGG-16
The idea: optimize pixels in a
random image to match one
of these filters

Here is a blog and the code

https://towardsdatascience.com/how-to-visualize-convolutional-features-in-40-lines-of-code-70b7d87b0030
https://github.com/fg91/visualizing-cnn-feature-maps/blob/master/filter_visualizer.ipynb

Recurrent neural
Networks (RNN)

Basics

Networks that model sequences

• Recurrent Neural Network(RNN) is a
type of Neural Network where the
output from the previous step is fed as
input to the current step

• The main feature of RNN is that its
hidden layer remembers the
information about a sequence seen so
far: it accumulates the information

Output

Input

Hidden Layer

Recurrent Neural Network has three major states:
• Input state
• Output state
• Recurrent state, which is a chain of hidden states, which

accumulates all the knowledge about the sequence seen so far

RNN vs. Multi-Layer Perceptron (MLP)

o

x1

Hidden Layerx2

x3

S
e
q
u
e
n
c
e
 a

s
 i
n
p
u
t
v
e
c
to

r

o

x1

ht-1

x2 x3

u1

u2

u3

w

Sequence is fed one symbol at a time

ot-1

ht ht+1

ot-1

u u u

v v

w
x

w w

x

ht

o

Folded representation

w

u

v

MLP

RNN

How RNN works

• RNN has a “memory” which remembers all information
about what has been seen so far

• Unlike MLP where each symbol of the input vector has its
own weight, RNN uses the same weights for each symbol
as it performs the same task on all the symbols

• RNN converts independent activations into dependent
activations by providing the same weights and biases to all
the layers, thus reducing the complexity of increasing
parameters and memorizing each previous output by
giving each output as input to the next hidden layer

Training RNN

• A single-time step of the input is provided to the network.

• It calculates its current state using a current input and the
previous state.

• The current ht becomes ht-1 for the next time step

• We can go as many time steps as there are symbols in the
input and join the information from all the previous states.

• Once all the time steps are completed, the final current state
is used to calculate the output.

• The output is then compared to the actual output i.e the
target output and the error is generated.

• The error is then back-propagated to the network to update
the weights and hence the network (RNN) is trained.

Current state depends on the current
symbol and the previous state

• The formula for calculating current state:

where:
ht -> current state
ht-1 -> previous state
xt -> input state

Same activation for all neurons in the
recurrent layer

• Formula for applying Activation function(tanh):

where:
whh -> weight at recurrent neuron
wxh -> weight at input neuron

Output: as before

• The formula for calculating output:

yt -> output
Why -> weight at output layer

Sample student project with RNN
(Bidirectional Long Short-Term Memory Network)

Protein structure predictor

SMPQGARAHMTFYLKMHVCFRDSKAPYAALRVFNFSISTQHHNIRNDLCW

by Joyee Wang

Sample aminoacid sequence for input:

https://barsky.ca/marina/SR/mlS19/projects/joyee/index.html

RNN: real-life example plus code: link

https://towardsdatascience.com/recurrent-neural-networks-explained-with-a-real-life-example-and-python-code-e8403a45f5de

Readings

• The 100 Page ML book by Andriy Burkiv: link

Chapter 6 (pp. 74 – 78) – deep learning

Chapter 6.2.1. (p. 78) – CNN

Chapter 6.2.2. (p. 82) – RNN

• Grokking Deep Learning by Andrew Trask: link

Chapters 1 – 6 (at least)

https://drive.google.com/file/d/1yjZtCjRnjbCXfR0sS311uPb3auAEfhZ4/view?usp=sharing
https://drive.google.com/file/d/1XXQXzTaYT_jn3VOPMoyvDmwglEOeQ8Jv/view?usp=sharing

Comparison

• Interesting discussion about HMM vs. RNN: link

• Paper on the same topic: link

https://stats.stackexchange.com/questions/282987/hidden-markov-model-vs-recurrent-neural-network
https://hal.science/hal-02387002/document

	Slide 1: Applications of Neural Networks to strings and sequences
	Slide 2: Convolutional Neural Networks
	Slide 3: Problem with number of layers and number of neurons
	Slide 4: Recognizing local regions of the image
	Slide 5: Detecting image patterns
	Slide 6: The “filter” idea
	Slide 7: Comparing input patch to a filter
	Slide 8: Learning matrix F
	Slide 9: Learning matrix F
	Slide 10: Optimizing (matching) filter to a patch
	Slide 11: Convolutional Neural Network (CNN)
	Slide 12: Computing convolution for the entire image
	Slide 13: Filter convolving across the image
	Slide 14: Volume: collection of matrices
	Slide 15: The volume convolves as a single input
	Slide 16: Input image as a volume of 3 color channels
	Slide 17: CNN: parameters
	Slide 18: Sequence classification with CNN
	Slide 19: CNN for sequence classification
	Slide 20: 1D convolution
	Slide 21
	Slide 22: What is going on inside?
	Slide 23: How and what does it learn?
	Slide 24: How CNN sees images after learning
	Slide 25: Experiment: understanding learned patterns (filters)
	Slide 26: VGG-16
	Slide 27
	Slide 28: Recurrent neural Networks (RNN)
	Slide 29: Networks that model sequences
	Slide 30: RNN vs. Multi-Layer Perceptron (MLP)
	Slide 31: How RNN works
	Slide 32: Training RNN
	Slide 33: Current state depends on the current symbol and the previous state
	Slide 34: Same activation for all neurons in the recurrent layer
	Slide 35: Output: as before
	Slide 36: Sample student project with RNN (Bidirectional Long Short-Term Memory Network)
	Slide 37
	Slide 38: Readings
	Slide 39: Comparison

