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Convolutional Neural 
Networks

CNNs



Problem with number of layers 
and number of neurons

• The number of parameters in NN grows very fast as we add 
more layers

• If a single input vector contains n features, and we create 
another layer of size m - we add n*m additional weights edges
For n=1000 and m=1000 we need to learn 1,000,000 additional weights

• Optimizing such big models is computationally expensive

• When our training examples are images, the input is already 
very high-dimensional

• If we use MLP with more than 3 layers - the optimization 
problem quickly becomes intractable



Recognizing local regions 
of the image

• Pixels that are close to each other usually 
represent the same type of information: 
sky, water, leaves, fur, bricks... This 
information can likely be combined into a 
smaller number of features

• The parts of an image where two different 
types of information “touch” one another -
represent a shape

• The idea is to train the neural network to 
recognize regions of the same information 
as well as the edges, and use these learned 
features as new less-dimensional vectors 
for classifying images



Detecting image patterns

• We can split the image into square patches using a sliding 
frame approach 

• We can then train multiple smaller models at once, each 
small model receiving a square patch as input

• The goal of each small model is to learn to detect a 
specific kind of pattern in the input patch

• For example, one small model will learn to detect the sky, 
another one will detect the grass, the third one will detect 
edges of a building...



The “filter” idea

• If we train a network using a set of labeled images (say, 
set of cats) the model will learn a set of local patterns 
which are most common to all cats 

• We call these local patterns filters

• The CNN learns the filter shapes on its own during training 
- all you need to decide is the size of each filter, and the 
network will learn what each filter should look like

• Later, during classification, it will apply each filter to a new 
image and compute the output - image class 



Comparing input patch to a filter

• Once you decide on the size of each filter, 
the regular training will produce the 
optimal values for each filter matrix

• Let’s assume - for simplicity - that the 
input image is black and white, with 1 
representing black and 0 representing 
white pixels 

• Assume that our patches are 3 by 3 pixels 
(p = 3). Some patch could then look like 
matrix P (for “patch”)

• Let’s say we want to detect a pattern 
called “cross” in the image data. We 
initialize the matrix F (filter) with some 
random values

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter initialized 



Learning matrix F

• The small regression model that will 
detect “cross” patterns (and only them) 
would need to learn a 3 by 3 parameter 
matrix F where parameters at positions 
corresponding to the 1s in the input 
patch would be positive numbers, 
while the parameters in positions 
corresponding to 0s would be close to 
zero 

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 0

F= 2 4 1

0 3 0

Filter: to be learned from data



Learning matrix F

• The learning proceeds by calculating the 
dot-product between matrices P and F 
and then summing up all values from the 
resulting vector

• The higher the value, the more similar F 
is to P: 

P · F = [0 · 0 + 2 · 1 + 0 · 0, 2 · 1 + 4 · 1 + 3 · 1, 
3 · 0 + 1 · 1 + 0 · 1] = [2, 9, 1]

The sum is 2 + 9 + 1 = 12

• This operation — the dot product 
between a patch and a filter and then 
summing the values — is called 
convolution

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter: randomly initialized



Optimizing (matching) filter to a 
patch

• If our input patch P had a different 
pattern - then the convolution would 
give a lower result: 0 + 9 + 0 = 9 

• The more the patch “looks” like the 
filter, the higher the value of the 
convolution is 

• There’s also a bias parameter b 
associated with each filter F which is 
added to the result of a convolution 
before applying the nonlinearity

1 1 1

P= 0 1 0

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter: randomly initialized



Convolutional Neural Network 
(CNN)
• A Convolutional Neural Network (CNN) is a special kind of 

Feed Forward NN that significantly reduces the number of 
parameters in a deep neural network, by converting 
multi-dimensional data into smaller convolved features 

• CNNs are used in image and text recognition where they 
beat many previously established benchmarks



Computing convolution for the 
entire image

• One hidden layer of a CNN consists of multiple 
convolution filters (each with its own bias parameter), just 
like one layer in a vanilla NN consists of multiple units

• Each filter of the first (leftmost) hidden layer slides — or 
convolves — across the input image, left to right, top to 
bottom, and convolution is computed for each sliding 
input frame

• So each neuron in a CNN layer is a filter which learns a 
single pattern. The number of such units generally is much 
smaller than the number of original pixels



Filter convolving across the image
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● As a result of this convolution, 
instead of a 4x4 image matrix 
we get a 3x3 matrix

● This matrix becomes an input 
to the next hidden layer

● A nonlinearity (ReLU) is 
applied to the [sum of the 
convolution plus the bias]

● The numbers for each filter 
matrix F and the value of the 
bias term b, are found by the 
gradient descent with  
backpropagation



Volume: collection of matrices

• Each layer with m filters produces m matrices of size pxp
which serve as an input for the next hidden layer

• If the next layer is also a convolution layer, then layer i + 1 
treats the output of the preceding layer i as a collection of 
m images

• Such a collection is called a volume. Each filter of layer i + 1 
convolves the whole volume produced by filter i

• The convolution of a patch of a volume is simply the sum 
of convolutions of the corresponding patches of individual 
matrices in this volume



The volume convolves as a single 
input
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(-2 · 3 + 3 · 1 + 5 · 4 + -1 · 1) +(-2 · 2 + 3 · (-1) + 5 · (-3) + -1 · 1) + (-2 · 1 + 3 · (-1) + 5 · 2 + -1 · (-1)) + (-2)= -3



Input image as a volume of 3 
color channels

CNNs also often get volumes as input, since an image is 
usually represented by three channels: R, G, and B, each 
channel being a monochrome picture



CNN: parameters

This is just a very high-level picture of the CNN architecture

Other essential features include strides, padding, and pooling

• Strides and padding are hyperparameters of the 
convolution filter and the sliding window

• Pooling example: max pooling

All this is designed to reduce the number of parameters of a 
CNN even more



Sequence classification 
with CNN



CNN for sequence classification

• We can use the same idea with sequence data:

The sequence can be thought of as a 1D image, where 
time is treated as a spatial dimension (like the height or 
width of a 2D image)

• CNNs are often used for:

• audio generation 

• machine translation

• text classification 

• timeseries forecasting



1D convolution

• In 2D convolutions we 
extracted 2D patches from 
image tensors

• In the same way, we can use 
1D convolutions, extracting 
local 1D patches 
(subsequences) from 
sequences

• Such 1D convolution layers can recognize local patterns in a 

sequence

• Because the same input transformation is performed on every patch, 

a pattern learned at a certain position in a sentence can later be 

recognized at a different position

For instance, a 1D CNN which is using convolution windows of size 5 is 

able to learn words or word fragments of length 5 or less, and is able to 

recognize these words in any context in an input sequence



Demos of using CNN for image and sequence 
classification: here

https://github.com/mgbarsky/demo_cnn.git


What is going on inside?
What does the network learn about images?



How and what does it learn?

The exact way neural networks see and interpret the world 
remains a black box

We want to better understand of how exactly they 
recognize specific patterns or objects in order to:

• improve the quality of NN learning 
• solve legal problems since in many cases the outputs 

have to be interpretable by humans



How CNN sees images after 
learning

• Neural networks learn to transform images into 
successive layers of increasingly meaningful and complex 
representations (filters)

• We can think of a deep network as a “multistage 
information-distillation operation, where information 
goes through successive filters and comes out increasingly 
purified”. (François Chollet, “Deep Learning with Python”)

• We can generate patterns that maximize the mean 
activation of a chosen feature map in a certain layer



Experiment: understanding 
learned patterns (filters)

• Get a network which already learned to recognize 
thousands of image types 
• Pre-trained model is available from torchvision.models
• Data is from http://www.image-net.org/
• The network is VGG-16

• The goal is NOT to train the model, but use it in an 
evaluation mode

• Then show an image with random pixels to the model and 
optimize the pixel values to best match each filter at each 
hidden level (Erhan, D. et al. “Visualizing Higher-Layer 
Features of a Deep Network”, 2009).

http://www.image-net.org/


VGG-16
The idea: optimize pixels in a 
random image to match one 
of these filters



Here is a blog and the code 

https://towardsdatascience.com/how-to-visualize-convolutional-features-in-40-lines-of-code-70b7d87b0030
https://github.com/fg91/visualizing-cnn-feature-maps/blob/master/filter_visualizer.ipynb


Recurrent neural 
Networks (RNN)

Basics



Networks that model sequences

• Recurrent Neural Network(RNN) is a 
type of Neural Network where the 
output from the previous step is fed as 
input to the current step

• The main feature of RNN is that its 
hidden layer remembers the 
information about a sequence seen so 
far: it accumulates the information

Output

Input

Hidden Layer

Recurrent Neural Network has three major states:
• Input state
• Output state
• Recurrent state, which is a chain of hidden states, which 

accumulates all the knowledge about the sequence seen so far



RNN vs. Multi-Layer Perceptron (MLP)
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How RNN works

• RNN has a “memory” which remembers all information 
about what has been seen so far

• Unlike MLP where each symbol of the input vector has its
own weight, RNN uses the same weights for each symbol 
as it performs the same task on all the symbols

• RNN converts independent activations into dependent 
activations by providing the same weights and biases to all 
the layers, thus reducing the complexity of increasing 
parameters and memorizing each previous output by 
giving each output as input to the next hidden layer



Training RNN

• A single-time step of the input is provided to the network.

• It calculates its current state using a current input and the 
previous state.

• The current ht becomes ht-1 for the next time step

• We can go as many time steps as there are symbols in the 
input and join the information from all the previous states.

• Once all the time steps are completed, the final current state 
is used to calculate the output.

• The output is then compared to the actual output i.e the 
target output and the error is generated.

• The error is then back-propagated to the network to update 
the weights and hence the network (RNN) is trained.



Current state depends on the current 
symbol and the previous state

• The formula for calculating current state:

where:
ht -> current state 
ht-1 -> previous state 
xt -> input state



Same activation for all neurons in the 
recurrent layer

• Formula for applying Activation function(tanh):

where:
whh -> weight at recurrent neuron 
wxh -> weight at input neuron



Output: as before

• The formula for calculating output:

yt -> output 
Why -> weight at output layer



Sample student project with RNN 
(Bidirectional Long Short-Term Memory Network)

Protein structure predictor

SMPQGARAHMTFYLKMHVCFRDSKAPYAALRVFNFSISTQHHNIRNDLCW

by Joyee Wang

Sample aminoacid sequence for input:

https://barsky.ca/marina/SR/mlS19/projects/joyee/index.html


RNN: real-life example plus code: link

https://towardsdatascience.com/recurrent-neural-networks-explained-with-a-real-life-example-and-python-code-e8403a45f5de


Readings

• The 100 Page ML book by Andriy Burkiv: link

Chapter 6 (pp. 74 – 78) – deep learning

Chapter 6.2.1. (p. 78) – CNN

Chapter 6.2.2. (p. 82) – RNN

• Grokking Deep Learning by Andrew Trask: link

Chapters 1 – 6 (at least)

https://drive.google.com/file/d/1yjZtCjRnjbCXfR0sS311uPb3auAEfhZ4/view?usp=sharing
https://drive.google.com/file/d/1XXQXzTaYT_jn3VOPMoyvDmwglEOeQ8Jv/view?usp=sharing


Comparison

• Interesting discussion about HMM vs. RNN: link

• Paper on the same topic: link

https://stats.stackexchange.com/questions/282987/hidden-markov-model-vs-recurrent-neural-network
https://hal.science/hal-02387002/document

	Slide 1: Applications of Neural Networks to strings and sequences
	Slide 2: Convolutional Neural Networks
	Slide 3: Problem with number of layers and number of neurons
	Slide 4: Recognizing local regions  of the image
	Slide 5: Detecting image patterns
	Slide 6: The “filter” idea
	Slide 7: Comparing input patch to a filter
	Slide 8: Learning matrix F
	Slide 9: Learning matrix F
	Slide 10: Optimizing (matching) filter to a patch
	Slide 11: Convolutional Neural Network (CNN)
	Slide 12: Computing convolution for the entire image
	Slide 13: Filter convolving across the image
	Slide 14: Volume: collection of matrices
	Slide 15: The volume convolves as a single input
	Slide 16: Input image as a volume of 3 color channels
	Slide 17: CNN: parameters
	Slide 18: Sequence classification with CNN
	Slide 19: CNN for sequence classification
	Slide 20: 1D convolution
	Slide 21
	Slide 22:   What is going on inside? 
	Slide 23: How and what does it learn?
	Slide 24: How CNN sees images after learning
	Slide 25: Experiment: understanding learned patterns (filters)
	Slide 26: VGG-16
	Slide 27
	Slide 28: Recurrent neural Networks (RNN)
	Slide 29: Networks that model sequences
	Slide 30: RNN vs. Multi-Layer Perceptron (MLP)
	Slide 31: How RNN works
	Slide 32: Training RNN
	Slide 33: Current state depends on the current symbol and the previous state
	Slide 34: Same activation for all neurons in the recurrent layer
	Slide 35: Output: as before
	Slide 36: Sample student project with RNN (Bidirectional Long Short-Term Memory Network)
	Slide 37
	Slide 38: Readings
	Slide 39: Comparison

